
PMM u.S.S.R.,vo1.44,pp.604-610 

Copyright Pergamon Press Ltd.1981.Printed in U.K. 
CQ21-8928/81/5 0604 $7.50/O 

UDC 539.375:534-l 

VIBRATION OF A CIRCULAR CRACK UNDER THREE-DIMENSIONAL LOADING* 

V. A. BABESHKO and G. V. TKACHEV 

The three-dimensional problem of harmonic oscillations of an elastic layer z,~E(- 

w,w), --h<zdO of thickness h, induced by the vibration of the upper and lower 
edges of circular crack in the plane a= --c (0< c<h) parallel to the layer bound- 
aries and occupying region 51 (z'+l/*<L12). The crack edges are loaded by an arbitr- 
ary three-dimensional force system oscillating at frequency 0. The upperandlower 

boundaries of the layer are free of stresses. The respective boundary value problem 
is reduced to the solution of a system of three integral equations of the firstkind, 

which is then transformed into a system of two integral equations and one independ- 

ent separate equation, which are regularized by the method of factorization of 
functions and matrix-functions. As the result, the problem is reduced to a system 
of two integral equations and one separate integral equation which are of the 
second kind of the Fredholm type. These are then reduced to a finite-dimensional 
algebraic system. 

A particular case of this problem was considered in /l/, where the vibration of a semi- 

infinite crack in an elastic medium was investigated. Note that in the problem formulation 

in /l/, the kernel matrix-function is considerably simplified so that the problem of matrix 

factorization does not arise, and the formulation of conditions of radiation is much simpler. 

1. The input boundary value problem defined by three Lamk differential equations with 

related boundary conditions is reduced by the method of integral transformswithallowance for 

radiation into infinity /2,3/ to the solution of a system of three integral equations in the 

unknown vector u* (5,~) of the difference of the crack upper and lower edge displacements. 

In dimensionless matrix form this system can be defined as follows: 

k*(s--,y--)u*(E,q)dfd’l=f*(5,Y), x,YE~(~‘+Yyrbl) 

k: (5 _ ,t, y _ rl) = &. s 1 K+ (a, f3) e-‘[‘+-~)+fi(u-‘J)1 da dfi 

r, r* 

(1.1) 

f* (z, y) = & 5 5 F* (a, p) e+@+flu) da@ 

l-1 rt 

F* 0% B) = -$ IT* (a, B) + M* (a, B) Q* (a, B)l (1.2) 

Vectors T*(a,p) and Q*(a, fi) are two-dimensional Fourier transforms in zc and y of 

vectors T&Y) and q* (x,y) which are, respectively, the vectors of stress at the crack up- 

per edge and of stress difference at its upper and lower edges. The selection of contours rr 

and r~ conforms to data in /3,4/, and K* (a, fi) and M* (a, p) are third order matrices whose 

elements, regular in the region containing contours rl and rz, are of the form 

K,,*(a, B) = a*S + B'T, K,,* (a, 0) = Ksl* (a, B) = ai3 (S - 2’ 
K,,’ (a, p) = a2T + pzS, K,,* (a, b) = - K,,*(a, fi)= - iaL 

(1.3) 

Ka3* (a, fl) = K, K,,* (a, p) = - Km* (a, B) = - +L 
Mll* (a, B) = 2s + B”b Mm* (a, B) = Mu* (a, B) = 4 (s - t) 

where 

s=&, K=$-, T=-&_ , L=& 

TM-ppP TM-PI’ 
s=~, kcT, t=_-+, I= pa---p 

--ET- 

(1.4) 

mP - pM 
4 = *u 3 D=P-RM, uz=a2+fi2 

*Prikl.Matem.Mekhan.,44,No.5,857-866,198O 
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P = p (C) - p (H - C), R = r (C) + r (H - C) 

M = m (C) + m (H - C), N = n (C) + n (H - C) 

p = p (H - C), r = r (H - C), m = m (H - C), n = n (H-C) 

yiz = us - xi2, i = I,2 

p (d) = -& [2y,y, (yz2 + u’) (~2% + 3u2) (I- ch (~14 ch (~4) + (fWyz2ua + (YZ’ + 4”) sh (~4 sh (WI 

r(d)= t%, 2 14y1yd sh (yd) ch (yd) - (YC + us)2 ch (vd) sh (y&)1 

m(d) = s [4w& ch (yd) sh (w+_(ye2 + u2)* sh (Y&) ch (~d)l 

6 (4 = KY,’ + UT + 16y,*y,2u41 sh (y&J ah (y,d) + 8 (~2~ + U~)~U~~IYZ [I - ch (y,d) ch (y&l 

(a is the crack radius, and p,G, and Y are, respectively, the density, shear modulus and 

Poisson's coefficient of the material of the layer). If the crack is at the interface of 

two layers of different densities and elastic properties, it is necessary to consider in 

formulas (1.4) p (C), r(C), m(C), n(C) as dependent on parameters of the upper layer of thick- 

ness c, and p (H - G), r(H- C), m(H- C), n(H- C) on those of the lower layer of thickness 
h - c. 

As 1 u I-+m (u" = $+ p") , the asymptotic behavior of elements of matrices K* (a, fi) and 

M* (a, B) is defined as follows: 

Kiji (a, B) = cil I u I + 0 (I), KS,* (a, B) = ~33 I u I + 0 (1) (1.5) 

Ki3* (a, p) = K,j* (a, f3) = Cij 1 u 1 se-c;tLl (1 + 0 (I u I-')) 

c>O,i,j=1,2 

Mij* (a, p) = dij + 0 (I U I -I), i, j = 1, 2, 3 

where cij and dij are some constants. 

We introduce the class Ga(a> 1) of functions f(r,Y) that vanish at the boundary of 

region Q(z' i- Y2 = 1) and whose derivatives with respect to each variable belong to &(a>l). 

This class of functions is imbedded in the space of functions for which the integral 

jS~~'+Bz+r.~,Q(~,B)l'dndp(lo (1.6) 

where h- is some number, is convergent. 

We denote by fz,(n = 1,2, . . . . IV) the poles of functions S, T, L,K (the same for all 

elements). The theorem of uniqueness holds for the system of integral equations (1.1). 

Theorem 1. If region Q is convex, the system of integral equations (1.1) cannot have 

in Ga(a> 1) more than one solution, when S, T,L, K satisfy the conditions: 

1". IS-' (z,,)l' > 0, [T-l (z,)l’> 0, n = 1, 2, ., N. 
2”. IK-’ (~41 LY’ @,)I - {IL-’ (z,JI’}~ > 0, n = 1, 2, . ., N. 

3”. There exists a matrix D(U), ~2 = a2 + fj* with elements n,,,(u) that are rational 

functions bounded at infinity, with poles at points +z, such that for any u(- 00 < U( OO) 

the real Hermitian component of matrix K* (a, b)n-l(u) is positive definite. 

Proof of this theorem is analogous to that described in /4,5/ and is omitted here. 

2. Let us continue the right-hand sides of equations of system (1.1) over the whole 
plane of vector functions II@, Y) , and pass to a cylindrical coordinate system followed by 
expansion of all functions in the Fourier-Bessel series 

f(r. cc) = ,,j_, fl (r, m) e'mv (2.1) 

Application of the integral transform to the extended system of three Eqs. (1.1) reduces 
its solution, after linear transformation, to solving for each integral m the system of two 
equations 

K (u) U (u, m) = F (u, m) $- Y (u, m) (2.2) 

where vector F(u,m) and the elements of second order matrices K (u) and M(u) are of the 
form 
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F (J-L m) = $- [T (u,, m) + M(u) Q (u, m)l (2.3) 

Kl, (w) = U’S, K,, (u) = Kzl (u) = A, K,, (u) = K, if,, (u) = u’s, M&f = - ul, AftI fu) = uZ,, 3’92 (u) = k 

ad one separate equation which is solved independently of (2.2) 

where 

Components of the two-dimensional vector U(u,m) and function 1I,(u,m) are of the form 
1 

iZ$* (r, 4) J,+ (ru.) - (I+* (r, m) + iu.,* (r, m)) J,,, (rlc)] r dr 

UL(u,mj=2\ u,* (r, m) J, (ru) r dr 
0 

(2.6) 

u3 04 ml = ~((iu,’ fr, m) + %* (r, m)) Jm-2 (rzi) + (iu,* (r, m) - I+* (r, m)) J,,, (ru)) r dr 

Here and subsequently J,(z) and H,'2)(s) are Bessel functions of the first and third kind, 
respectively. 

The components of vectors T(u, m) and Q(u,mf and of functions T8 (% m) and QS (u, m) 
are of similar form. The components of vector UF(u, m) and function ya(u, mj which are in- 
tegral transforms of g (r,m) are also determined by formulas (2.6), but their integrals have 
to be taken over the interval 1 to CO. 

It is convenient to consider Eq. (2.4) as a particular case of the system of Eqs. (2.2) 
with a first order matrix and solve it similarly to (2.2). 

3. Below we use the method of left-side regularization of the system of Eqs. (2.21, 
which is effective when the conditions oftheproblem necessitate the determination cf the 
continuation of the right-hand side of (2.2), i.e. of the vector function that defines the 
behavior of the system of integral equations outside the specified region. The system of 
Eqs. (2.2) is then directly solved using quadratures of the extended right-hand side. Applic- 
ation of this method and of the left-side regularization to the system of integral equations 
(2.2) was validated in /5/. 

The indicated method and the factorization of matrix functions followed by the projec- 
tion of the system of Bqs. (2.2) on the upper and lower half-planes of the complex variable 
u yield for the continuation of the right-hand sides of equations of this system an expres- 

sion in terms of the two-dimensional vector function Y+ (r,m) which is regular in the upper 
half-plane and is determined by the uniquely solvable system of integral equations of the 
second kind 

Y+ (r, m) + NY* (r, m) = D (r, m) (3.11 

NY’(r,m)=& *ir";? K+(P)Y+Q-J,~)&J 

D (r, m) = & 
s 

K;'(a) 
a--r 2 (a, m) H$ (a) J, (a) a da 

n 

Z1(a,nr)=+ &(a, m)=- FI (a. nr) 

r J,,, (a) 

where K+(u) and K_(U) are factors resulting from the left-side factorization of matrix 
function K(u) with respect to contour r /5,6/ 

K (n) =K+(n) K_(n) (3.2) 

and K,(u) and K_(u) are matrices whose elements are regular and have no zeros in the upper 
and lower half-planes, respectively. Contour p, coincides everywhere with the real axis, by- 
passing the real positive and negative poles and zeros of K(U) , respectively, from below 
and above. Contour p_ lies below rr but the integrand between r1 and I'_ is regular. Point 
r lies above F,. 

The solution of (2.4) similarly reduces to solving an equation of the form (3.1) in 
which functions K+(u) and K_(u)-th e results of factorization of K,,(u) with respect to 
contour r-are substituted for matrices K+(n) and K_(u), the elements D,, @, a, m) of 
matrix e(p,a,m) substituted for the matrix itself, and function 
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substituted for vector 2 (a, m) . 
System (3.1) can be reduced to a Fredholm system, and its solution then derived by means 

of external analysis /7/. However, the method based on the approximate reduction to a system 
of linear algebraic equations /8/ with approximate factorization of the matrix function K(u) 
is more convenient, Splitting the operator into a finite-dimensional and a small one which 
can be neglected on the basis of available estimates /5/ (the presence in it of decreasing 
exponents) is obtained by deforming contours r, and I?_ downward to the branchingpoint u = -ii6 
introduced in matrix Ii(u) in the couxse of approximation with the addition of integrand 
residues taken at poles of that function at intersections with deformed contours. 

We express the components of vector Y(u,m) in terms of Y+(z(: m.) and, after inversion of 
formulas (2.6), we obtain for the Fourier coefficients of vector function *(r,m) in a cylind- 
rical coordinate system expressionsofthe form 

(3.3) 

Y (a, m) = OK, (CL) Y+ (a, m) + F (a) H,* (a), Y, ( a, m) = OK, (a) Y,+ (a, m) f F, (u) H,,,@) (a) (3.4) 

Contours ris above contour r_ and Im a< Imp. Elements of the diagonal matrices 
6(p,a, m) and e*(p,a,m) are of the form 

(3.5) 

8jj (p, a, m) = - xaiHg) (a) J,(a) @jj* (p, a, m) + (p f a), j = 1,2 

After the vector function q(x,y)-the continuation of the right-hand sides of equations 
of system (1.1) outside of the specified region Q-has been determined using formulas (2.1) 
and (3.31, the solution (the vector function u*(x,~)) of that system can be obtained by a 
double application of integral transforms to system (1.1) whose right-hand sides are now 
specified over the whole plane. 

4. The following asymptotic estimates can be obtained for the vector function Y+(p,m) 
and function Y3+(p,m) as Ip I--fco. 

Y+ (P, ml = e,p-’ -i- 0 (p-“h Y3+ (p, mf = cap-’ + 0 (133 
(4.1) 

where e, is a constant vector and C, =const). 
The expression for the stress vector r&Y) along the continuation of the crack upper 

edge, i.e. for z9 + y"> 1, is readily obtained in terms of the extension of the right-hand 
side of $(z,y) of the system of Eqs. (1.1) 

z(zJ)=+P(z*Y)- &S 1 ~l*(a,~)Q*(a,~)e-i(ax+~~)dad~, sa+ y"> 1 (4.2) 

I', rr 

Using estimates (4.1) for components of the vector function r(x,~) we obtain the asymp- 
totic formulas 

A 
Ti (x, y) = 1 

l/r-1 ’ 
r=(x3+y2)‘:~-+1, r> I, i=1,2,3 

where Ai are some constants proportional to dynamic intensity coefficients of respective stres- 
ses at the crack tip. Application of the method of left side regularization for solving the 
system of integral equations enables us to determine immediately the dynamic stress intensity 
coefficient, an important parameter in fracture mechanics, without having to solve the system 
itself. 

5. In the numerical solution of the problem we are faced with the problem of factoriza- 
tion of the matrix function K(u) of the form (3.2). Elements of that matrix have the following 



608 V. A. Babeshko and G.V. Tkachev 

properties: 

lo they are regular 

(poles) that are the same 
ZO functions K,,(u) 

along the whole real axis, except at a finite number of points 
for all elements; 

and K,,(u) are even, while K,,(u) = K,, (u) are odd, and 
3O as U-+00 the matrix elements are of the following order: 

Ku (u), &, (u) = 0 (I u I), K,, (u), K,, (u) = 0 (e-+I) 

Owing to the extreme complexity of the elements of matrix K(u) which have such propert- 

ies, its factorization can be effected only approximately. For this matrix K(u) is approx- 

imated by matrix H(u)with rational fractional elements multiplied by (u" + bz)'/? , where b 
is some constant. Validity of this approximation is substantiated by the following theorem. 

Theorem 2. Let u(l) (5, y) = {t+(l) (5, y), u,(l) (2, y)} and ut2) (I, y) = {(~~(2)(2,y),u~(~)(z, y)} be 

solutions of Eq. (1.1) when K(a, fi) =K(l)(a, f5) and K(a, fJ) =KW(a, p) respectively, with 
equal right-hand sides. Then, when the conditions of Theorem 1 and the conditions 

1 Kij”‘(a, fi) - J$~(“)(u, f3)I (det Kc') (u, p))-'(1 + (a"+ B*)'!')Y < E, y > '/z 

are satisfied for fairly small e, we have 

Iu~(~)(~,Y).--~(~)(~,Y) I<s(s), k =I,2 

Proof of this theorem, based on the method of perturbations, 

Matrix H(U) can be represented in the form 
is omitted here for brevity. 

H (u) = (u” + b2)‘/l fi (2 - zk2)-’ P (u) 
IrXl 

(5.1) 

where zk (k = 1, 2,. . ., n (n< N)) are real poles of elements of matrix K(u), zk (k =n + 1, . . ..N) 

are complex numbers, zeros of the denominator of rational fractional functions that approxi- 

mate the elements of matrix K (u)and are the same for all elements; P(u) is a polynomial mat- 

rix whose elements P,,(u) are polynomials of degree 2N and P,,(u) (m# n) polynomials of 

degree 2N -R (R > 0). It is clear from (5.1) that matrix I u I-lH (u) degenerates to a unit 

matrix as JuI--foo. Matrix P(u) can be represented in the form /9/ 

P (u) = C (u) G (IL) D (u) (5.2) 

where C (u) is a diagonal matrix with elements G,, (u) = const, and G,,(u) is a polynomial of 

degree 4N: D (u) and C(u) are matrices with regular elements and constant determinants. 
When the zeros of element G,,(u) are known , matrix G(u)can be readily represented in 

the form G(u) =G+(u)G_(u). The formula 

C (u) G+(u) = G+' (u) B (u) (5.3) 

is derived similarly to (5.2). The properties of matrix B(u) are the same as of matrices C(u) 

and D (u). This additional transform is required if the matrices 

K+(u) = (u + ib)‘lt fi (u + zk)-’ G,” (u), K_(u) = (u - ib)‘lz fi (u - zk)-lB (u) G_ (IL) D (u) (5.4) 

h‘=1 k=i 

obtained by the factor+ation of H (u) , 

1/1/L K+(u) and I/ I/UK_(U) 
are to satisfy not only (3.2) but, also, if matrices 

are to degenerate in unit matrices as IUI-+CO. 

6. As an example of solution derivation by the proposed method, let us consider the 

solution of the system of integral equations (1.1) with matrix K*(a,fi) and its elements 

Kjj*(a, fi)= s ( u* = a%+ pa, j = 1, 2, 3 

&*(a, b)= - K,*(a, B) = ia&, Kla* (a. p) = KS,* (a, 0) = 0 

K,* (h, t3) = - Ku* (a, B) = $5 & 

and right-hand side fx (5, y) = ju (2, y) = 0, fz (z, y) = 1. 

Solution of that system of equations reduces to the solution of the system of Eqs. (2.2) 

and of the single equation (2.4) only for m=O. In our problem the functions and matrix 

elements are 

Kjj(+g, j=1,2,3; K,,(u)=&,(u)= & 

The factorization of matrix K(u) yields for the elements of matrices K+(u) and K- (~1 
the expressions 
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K$ (4 = K& (4 = (u + it) (u k t (i + i))-I., Kg (u) = K;(u) = t (u + t (i + l))-’ 

Solving the algebraic system to which system (3.1) reduces, we obtain 

Y1+(-_(i+l))=-YY,+(-_(i+l))= 
4J1(- t (i- 1)) 

IT (1 - 1) J,, (- t (i - 1)) 8” (- t (i + 1). - t (i - 1)) 

8” (as i% = (a + p) (ffo@) W J1 (B) - HI@) (@.) Jo (B)) 

and for the single equation we have Ys+ (- t (i + 1)) E 0. 

Components of the vector function Q&Y)-continuation of the right-hand sides of the 

system of integral equations (1.1) outside the specified region of the cylindrical coordinate 

system-are of the form 

and the solution itself 

4tJ,(- f (i- 1)) 
*r (r’ O) = (i + 1) 8” (- t (i + 1), -t(i - 1)) 

HP) (- rt (i + 1)) 

qq (r. 0) = 0 
4tJ, (- t (i - I)) 

h (rl O) = (i + 1) 00 (- t (L + I), _ t (i _ 1)) HP) (- rt (i + I)) 

is, respectively, 

4tH!2) (- t (i + 1)) 

(6.1) 

(6.2) 

ur* (r, 0) = - (1 + 1) G” c-t (1+ I), -t(i --l))Jl(- rt (L - i)) 

urp* (r, 0) = 0 

4tq (- t (i + 1)) 
uz* (rr 0) = -i- (i + 1) w (_ t (i + I), _ t (i _ 1)) Jo (-rt (i- 1)) 

whose substitution into the input system (1.1) yields an identity, which proves the correct- 
ness of (6.2). 

7. A set of applied programs compiled at the Scientific Research Institute of Applied 

Mathematics of the Rostov State University makes possible the approximation and factorization 

of matrices, and the calculation of characteristics of a crack with edges subjected to harm- 
onic oscillations. These programs were used for determining the dynamic stress intensity 
coefficient at the crack tip under the application of normal oscillating load to its edges 

r (z, y) = (0, 0, 01, u = con& z, y E P 

In Fig.1 is shown the dependence of the dimensionless quantity IK/ol on parameter q 
(see (l-4)), where K is a dynamic coefficient of tension intensity in the top crack. The 
solid line relates to crack located at distance 0.2 ofitsthickness, but dash and dash-dot 

lines relate, respectively, to cracks located at distances 0.25 and 0.3 of crack thickness. 

ISI 

The dependence of I K /ol relation is on the 

frequency of the crack banks oscillation and on it 

15 layout in the layer. 

The behavior of these curves substantially 

differs from that shown in /lo/, where the plane 

10 problem of crack edge oscillation in an elastic 

space was investigated. Their comparison clearly 

shows that the scale factor (a crack of finite 

5 
dimensions in our problem and an infinite one in 

one direction in the plane crack problem) has an 

appreciable effect on the dynamic stress intensity 

coefficient. 
0 

The presence of some frequencies 
%({I, i = 1, 2, . , at which that coefficient is close 
to zero should be noted. 

Fig.1 
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